
 Advanced search

Linux Journal Issue #7/November 1994

Features

Making the Most of Andrew by Terry Gliedt
A conclustion of the four-part series on Andrew

Report from the Front: Linux in Antarctica by Andrew Tridgell
Samba: Unix Talking with PCs by Andrew Tridgell

A complete history on the development of Samba from its
original author.

Linux Performance Tuning for the Faint of Heart by Clarence Smith Jr.
Guide for rebuilding your kernel

News & Articles

Selecting Hardware for a Linux System by Phil Hughes
CD-ROMs and Linux by Jeff Tranter
Linux User Group News
What's GNU? groff by Arnold Robbins
Linux Events
Andy by Andy Tefft

Columns

Letters to the Editor
Stop the Presses by Phil Hughes
New Products

Archive Index

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/007/2842.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2843.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2858.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2859.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2850.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2851.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2860.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2862.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2863.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2864.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2849.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2861.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2865.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Making the Most of Andrew

Terry Gliedt

Issue #7, November 1994

In this article, Terry Gliedt completes our tour through the Andrew project with
details on using and customizing AUIS applications.

In previous articles I focused a great deal on the ez editor and on the multi-
media user mail agent, messages, but these are only two of a rich set of
applications. Here are a few other applications that you'll find useful:

bush (see Figure 1) provides a graphical interface to the file system. It shows
the directory hierarchy, filenames and their attributes. It also provides a
window where the ez editor will run as well as a means to invoke an arbitrary
command on a file. With bush you can sort the list, rename, and delete files,
too.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. Bush Showing a Tree of Directories

chart allows you to create simple graphs from numeric data. The data can be
presented as a histogram, pie chart, or line graph.

ezdiff is not actually an application, but rather a procedure you can call from all
ez windows. This is used to run the diff command on the data in two windows
and then interactively see the difference between the files.

To try ezdiff, edit two files (e.g., ez/etc/hosts .deny/etc/hosts.equiv). In each
window, select the Start item on the Ezdiff menu card. As you select the Next
item on the Ezdiff menu card, the differences in each file are shown as
highlighted data. This makes it very easy to copy lines selected in one window
and paste them in the other. And yes, ez correctly remembers the locations of
all the other differences when you make changes to either document. This is a
life saver when looking at various versions of a file.

figure (see Figure 2) is a fairly conventional drawing editor. The files usually
have an extension of .fi. Figure can create a document with lines, circles, boxes,
and other insets (e.g., rasters or text), and then move them around, reshape,
etc. Since figure creates an ATK data-stream, you can easily insert figures in
other AUIS documents.

Figure 2. Sample AUIS Figure

pipescript (see Figure 3) reads data from stdin and displays it in a window. This
is very convenient with pipes, because the output data does not disturb your
xterm window and yet is not in a file you need to remove. The data can be

conveniently scrolled, searched or saved. I use it all the time for commands like
tar tzvf auis63L1-wp.tgz | pipescript.

raster provides a simple means to edit digitized pictures (called rasters). The
data must be in AUIS data-stream format. The pbmplus package (available on
sunsite) provides a wide set of filters to convert between various forms of
digitized data. For example, to convert from a TIFF to an AUIS-raster, I'd use this
command:

tifftopnm test.tif | ppmquant 256 | ppmtopgm\
| pgmtopbm | pbmtocmuwm > test.ras

typescript (see Figure 4) provides an alternative to xterm. You enter commands
to your shell in the input window and the results are shown in the same
window where they can be scrolled, searched or saved. Typescript does not
support curses like xterm does, so you cannot run vi or bash in a typescript, for
example. However, you can use the tcsh or pdksh (ksh) shells.

Figure 3. grep InitializeClass *.c | pipescript

Typescript has several other features that I find very useful. The README for
the word processing package describes how you can cause the current working
directory to be kept in the title of the typescript window. Typescript is “smart”
about these paths, too. Notice in Figure 4 that the path shown in the title of the
window is “~”, my home directory, and not a fully qualified path.

Typescript supports the use of several PC keys to make it easier to enter
commands. The Cursor-Left and Cursor-Right keys can be used to edit the
current command (regardless of whether my shell supports this). The Home
and End keys will move the cursor to the beginning or end of the line (or

selected area). The cursor keys are also mapped to allow me to move up and
down through the command history. Cursor-Up gets the previous command
entered, Cursor-Down the next.

Figure 4. Sample Typescript Window

In my opinion an even more useful feature is command completion. If I type ls
and then press Cursor-Up, I get the previous command that began with “ls”. File
completion is supported with the tab key. If I enter ls src/tp and then press the
tab key, typescript will complete the path “src/tp” to “src/tpg-config” (in my
case). It makes entering paths to files ten times easier. I love it!

If I enter a command like ls /etc, the window will likely fill and scroll
automatically. If I want to see the beginning of the scrolled data, I must use the
mouse (or Page-Up/Down keys) to scroll. However, if I enter ls /etc control-J

(where I enter the command with a control-J keystroke, rather than the normal
Enter), the command is executed, but the output is pushed to the top of the
current window so I do not need to scroll.

Typescript also allows me to create my own menus in the file ~/.shmenu. In
Figure 4, you can see I have a menu card Internet on the menubar. This is from
my own .shmenu file which looks like this:

User's .shmenu file
Do help .shmenu for more information.
Establish the pop up menus for the
typescript window.
Internet~20,FTP<->Sunsite export~15:ftp
sunsite.unc.edu
Internet~20,FTP<->CMU~16:ftp.andrew.cmu.edu
Internet~20,FTP_Anonymous~20:anonymous
Internet~20,FTP_Ident~21:tpg@mr.net
Internet~20,FTP_bin~22:bin
Internet~20,FTP_submissions~23:cd pub/next/submissions
Internet~20,Telnet->CMU~31:telnet ftp.andrew.cmu.edu
Internet~20,Bring Slip Up~40:/usr/local/bin/slipup
Internet~20,Take Slip Down~41:/usr/local/bin/slipdown

Figure 5. Modifying preferences with prefed

Using Filters

All AUIS applications provide a means to use a filter to modify a selected area.
The Misc menu card provides items to fold data to lower case, upper case or to
“flow” the data together. To use filters, simply select an area (so it is highlighted)
and select the correct item. There is also an item (Filter Prompt) which allows
you to specify your own filter. For instance, specifying the filter sort would
cause the selected text to be sorted—just like you would in a conventional Unix
pipe.

Introduction to AUIS

Personalizing AUIS

You can tailor the behavior and appearance of your AUIS applications with your
own ~/preferences file. Each time an application begins, it checks a set of
resources you have specified in your preferences file. The resources in the
preferences file are similar to other X-resources. A sample preferences file is
provided in /usr/andrew/sample.preference. If you edit this file you will find
lines like these:

Messages.Geometry: 750x600
Figure.BackgroundColor: White
*.BackgroundColor: LightSkyBlue4

https://secure2.linuxjournal.com/ljarchive/LJ/007/2842s1.html

The first field (e.g., Messages, Figure or “*”) is the application name. The asterisk
means it applies to all AUIS applications. AUIS resource names are case
insensitive, so “Messages” is the same as “messages”. The second field is
specific to the application. Most of these, like “Geometry” or “BackgroundColor”,
will be pretty obvious. Others, like “XStyleSelections”, will be a mystery unless
you read the preferences help file (auishelp preferences). Some of these
resources are specific to a single application and others apply to all AUIS
applications.

The third field (after the colon) is the value of the resource and is tied directly to
the second field. These resources can be rather confusing. To make it easier to
understand what resources can be set for which applications, a specialized
preferences editor was written, prefed. As you can see in Figure 5, the prefed
window is divided into four areas. You select the application name in the upper
left hand window (“EZ” in this case). The upper right hand window has the list of
resource names (“OverwriteFiles”). The middle window shows you what the
current setting is and allows you to change it. Finally, the bottom window
provides a description of what the resource controls. When you select the item
Save, your preferences file will be modified, just as you would expect with any
editor. The addition of prefed has made it much easier to figure out this
bewildering array of resource names. When an application initializes, it
searches for all resources that apply to that application. The resources are
applied in the order that they are read. The search order is first in ~/
preferences and then in the machine-wide “preferences” file in /usr/andrew/lib/

global.prf. Thus, if you specify any resources that apply against all applications
(e.g., *.BackgroundColor), these should be at the bottom of your preferences
file. This is sightly different than resources for conventional X-applications.

One thing to keep in mind is that preferences are only read when an
application initializes. If you change the ez BackgroundColor, for example, this
will not take effect until you start a new ez from the command line (from an
xterm or typescript).

Messages, the multi-media mail user agent, is unique with respect to its
treatment of preferences. Since there are a great many preferences resources
for messages, a long time ago the author of messages added his own
specialized way to set preferences for messages by selecting the Set Options
item on the Other menu card.

Printing

Printing is an area where it seems everyone needs to “have their own way”.
AUIS printing involves two steps. Applications generate groff data and the first
step is to format this to generate the printer-specific datastream. The second

step is to simply deliver the stream to the printer. These two steps can be
overridden with your preferences. The default preferences settings are:

*.FormatCommand: /usr/andrew/etc/atkprint /tmp/%s.n |
*.PrintCommand: lpr -P$PRINTER

These two commands are joined in a pipeline (hence the pipe character, “|”, at
the end of FormatCommand). When this command is built, the %s will be
changed to the name of the groff input file.

Many AUIS applications actually generate PostScript data with just a simple
groff “wrapper” around the PostScript. In the next major release, AUIS will
generate PostScript directly and the need for a FormatCommand will be
eliminated. But for now, if you are having difficulty you might want to copy /usr/

andrew/etc/atkprint and make your own version which you can modify to meet
your needs. You can then specify your own FormatCommand resource to
invoke your own version of atkprint.

Sometimes I want to capture the groff input, so I simply make a quick
preferences change

*.FormatCommand: cat /tmp/%s.n > /tmp/test.n

to copy in the input file to /tmp/test.n. I can then execute the print sequence
manually with:

/tmp/atkprint /tmp/test.n | pipescript

so I can see exactly what's happening in the shell script. On the other end, if I
want to simply capture the PostScript, I can change preferences to:

*.PrintCommand: cat > /tmp/test.ps

There are obviously many ways to accomplish either of these steps. The point
to remember is that AUIS printing is entirely externalized. You can control it to
any degree you need.

Initialization Files

At startup AUIS applications look for several initialization files. There are two
classes of these, global or machine-wide files found in /usr/andrew/lib and
personal files, found in your home directory. Each application can have its own
initialization file. For example, ez would check for files in this order:

~/.ezinit
/usr/andrew/lib/global.ezinit
~/.atkinit
/usr/andrew/lib/global.atkinit

If the .ezinit file is found, the global.ezinit is not read. Similarly, if .atkinit is
found, the global.atkinit file is not read. This ordering means that when you
create an initialization file, you should make it refer to the files that it masks by
using an “include” statement. So, if you are going to make a .ezinit file, you
would want to include the global.ezinit by:

include /usr/andrew/lib/global.ezinit
include $HOME/.atkinit

and your ~/.atkinit should probably include /usr/andrew/lib/global.atkinit.

If you don't include the global file, you will not get important default settings.
Note, though, that not all programs have global initialization files. When
something is defined more than once, the last definition stays in effect.

While I used ez in this example, this works exactly the same for typescript or
any other AUIS application. Typescript would read ~/.typescriptinit, or if that file
did not exist, it would read /usr/andrew/lib/global.typescriptinit instead. All
applications look for ~/.atkinit and /usr/andrew/lib/global.atkinit. These files are
described in more detail with the command auishelp initfiles.

Controlling Menus

In AUIS applications menus are simply a means to call a procedure (method) for
an object. AUIS has hundreds of these defined and they provide enormous
functionality. To define a menu, edit one of the initialization files described
previously (a personal initialization file is probably best) and add lines like
these:

addmenu filter-filter-region-thru-command
"Misc,Flow~20" textview \
 filter inherit "flowtogether"
addmenu textview-lowercase-word "Misc,Lower~21"
textview
addmenu textview-uppercase-word "Misc,Upper~22"
textview
addmenu filter-filter-region "Misc,Filter
Prompt~25" textview

The entries shown add items like Flow and Lower to the Misc menu card. The
order of these items is determined by the numbers (20, 21, etc.). When you
select a item like Lower, the procedure textview-lowercase-word will be called
and the selected area will be folded to lower case.

Knowing the procedure names is important to create menu cards. There is no
fixed list of all the procedures that are in AUIS because the AUIS objects are
dynamically loaded. To help you find out what is available, select Describe Proc
Table on the Misc menu card. This will open a window which displays a list of all
the procedures and a short description of purpose for each.

A more complex example is shown when the procedure filter-filter-region-thru-
command is called when the Flow item is selected. In this case the procedure
calls the filter flowtogether. Flowtogether is a simple filter which combines lines
together to remove excess whitespace and create data in paragraphs. I use this
filter in messages when I want to quote part of some mail and make it nicer
looking.

Most of the menus you see in the Linux distribution were added using
addmenu in the various initialization files. You can add your own menu cards
by adding addmenu commands in your private initialization files. More details
on adding menu cards can be found with the command auishelp initfiles.

Filetypes

If I issue the command ez test.d, the data in this file will be an AUIS text
document, but if I edit the file test.document, it will be just simply ASCII data.
The difference obviously has something to do with the extension of the file.
Linux, like all conventional Unix systems, really has no innate “knowledge” of
what is in a file, but we all have expectations for what's in the file test.c. It's just
a matter of convention. AUIS has its own conventions and these are controlled
in the file /usr/andrew/lib/global.filetypes which has entries like these:

addfiletype .Xdefaults rawtext "template=rawtext"
addfiletype .c ctext "template=c"
addfiletype .h ctext "template=h"
addfiletype .d text "template=default"
addfiletype .doc text "template=default"
addfiletype .help text "template=help"

Addfiletype commands allow you to map extensions to inset types so that new
documents you create with a certain extension will get the proper inset type
specified by the “template=” keyword.

Editing .Xdefaults will have the template rawtext (which will insure that copying
an AUIS datastream results in a simple ASCII string and not some bold text) and
editing .Xdefaults.old results in the default template (which allows you to copy
and retain bold text) which is probably not what you want. The current AUIS
distribution does not allow you to use wildcards in addfiletype commands, so
you must explicitly map .Xdefaults and .Xdefaults.old individually. More details
on filetypes can be found with the command auishelp initfiles.

Key Definitions

In AUIS applications, keystroke combinations are another means to get a
procedure called for an object. The same procedures are available for
keybinding as for menu items. To define a set of keybindings, edit one of the
initialization files described previously and add lines like these:

addkey compile-build ^X^E srctextview compile
addkey compile-next-error ^X^N srctextview compile
addkey compile-previous-error ^X^P srctextview compile
addkey fcomp-complete-command-forward \eB typescript fcomp inherit
addkey fcomp-complete-filename ^I typescript
addkey fcomp-possible-completions \e^I typescript

The first line of the example says that when you are in a srctextview inset (e.g.,
editing C-source), the procedure name compile-build will be called when you
press the keystrokes <control>X followed by <control>E. (The \eB in the fourth
line means you should press the escape key and then <shift>b.) You can see a
dynamically created list of all the keys that are bound to a procedure by
selecting the Describe Bound Keys item on the Misc menu card. You can also
query what procedure will be called for any keystroke by selecting the Describe
Key item on the Misc menu card.

Conclusion

AUIS is far more than just ez or messages--and yet in many ways it is no more.
AUIS is built on a toolkit of objects which combine to provide a set of tools
which are consistent in their look and feel and which can be extended or
combined with new applications with remarkable ease. In these four articles on
AUIS I have not attempted to show any of the underlying toolkit. The Andrew
Consortium is dedicated to extending and disseminating this technology. If you
think your organization could benefit, I'd encourage you to contact the
consortium and talk with us about what else has been done and what's new.

Terry Gliedt (tpg@mr.net) left Big Blue last year after spending over twenty
years with IBM. Although he has worked with Un*x and AUIS for over six years,
he is a relative newcomer to Linux. Terry does contract programming, teaches
classes in C/C++ and Unix and writes the occasional technical document.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:tpg@mr.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in Antarctica

Andrew Tridgell

Issue #7, November 1994

Between GPS satellites and the Australian Surveying and Land Information
Group are eight Linux systems, which have been collecting data for the last
year. Find out how they're set up and how they keep everything running.

I was approached in September 1993 by Martin Hendy at AUSLIG (Australian
Surveying and Land Information Group) to give him some information about
Linux to see if it was suitable for a large project they had underway.

After I showed him a couple of Linux systems and gave him a rundown, he
decided to go ahead, and the end result is that there are now eight Linux boxes
scattered around Australia, gathering data on the Global Positioning System.
The current systems are at Darwin, Ceduna, Alice Springs, Mawson Base
(Antarctica), Davis Base (Antarctica), Casey Base (Antarctica), Macquarie Island,
and Hobart. More are planned for other parts of Australia.

The application is a data gathering one. The Linux boxes are attached via serial
ports to a “TurboRogue” satellite receiver system, which monitors the 32-
satellite Global Positioning System. Data is downloaded from the satellites and
stored in a 4MB flashcard in the back of the TurboRogue, and from there it is
downloaded to the Linux systems. These systems store the data and forward it
to a base system in Canberra.

The monitoring of the GPS system is essential for accurate surveying work.
Some other countries (notably Canada) have set up similar networks for the
same purpose.

Some of the Linux systems are connected directly to AARNet via Ethernet (yes,
Antarctica is networked!) while others have 14.4 Kbps modems and download
data via scheduled cron jobs, using the term package. Even the machines on
the net have modems, as we can't absolutely rely on the network link.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Hardware

The Antarctic Linux systems are Digital 48633DX MT PCs with 8MB RAM. They
have two 345MB IDE hard disks, with only one electrically connected, (the other
is identically configured as a backup). They have one 1.44MB floppy drive and a
spare floppy (again, not connected). They have WD8013 Ethernet cards and
DataLink 14.4 Kbps modems.

The Linux systems for the other Australian sites are rack-mounted “clone” PCs,
for various reasons. They are identically configured.

Each system has four serial ports, each on its own interrupt. We achieved this
by making some minor modifications to a cheap 2-port serial board we bought
in Canberra. The more recently installed systems have eight serial ports using
two 4-port cards. The extra serial lines allow for control of more equipment.

The other custom hardware is a “rebooting module” designed and built by
Anthony Wesley here in Canberra. It is a small box that attaches to a serial port,
a power lead and the reset line of the computer. Basically, it expects a “healthy”
signal from the computer every five minutes on the serial line, or else it
“presses reset” by shorting the reset line for 30 seconds. These boxes are very
rarely needed, but it's good to know that they are there.

A process runs a script to check half a dozen things every minute and outputs
the “healthy” signal if they all pass.

The Software

The systems originally ran 0.99pl12 with a few patches. I chose this because I
have found it stable for my own use. We have upgraded (only rarely) when we
needed particular features or bugs fixed. One of the features of having the PCs
running Linux (they were considering DOS) is that we can completely replace
the system remotely, either via modem or the net.

Each hard disk has four partitions: a DOS partition with their old software on it
(just in case), two Linux root partitions (identically configured), and a data
partition (the bulk of the disk).

The Linux root partitions are 20MB and are only half full! Most of them are, in
fact, taken up with things that are only included “just in case”, like kernel
sources, gcc, sources for the TurboRogue controlling software and even Emacs
19.16 (to make life a little easier).

I have designed the system to be very small. It is small enough, in fact, that the
whole system can operate from a single 1.44MB floppy if I leave out the

“optional extras”. This is achieved by having the whole of the /usr tree in a
compressed tar file which uncompresses onto a ramdisk on bootup, and having
next to nothing outside of /usr. The systems on the hard disk are already
uncompressed.

This means that in case of emergency we can tell the on-site operators to insert
one of the duplicate “Emergency root disks” and we can operate the complete
system remotely just from the floppy, including disk-fixing tools like fdisk and
e2fsck.

cron is used to control the regular downloading of data from the TurboRogue
and transmitting the data to Canberra. Checksums are used to ensure the data
is correctly transmitted, and it is re-transmitted if necessary.

Since October 1993, when the first systems in Antarctica came on-line, an
enormous amount of data has flowed from the remote systems to the main
system here in Canberra. It is a great credit to Linux that it has performed so
well under difficult conditions. Congratulations to Linus and all the Linux
developers!

Andrew Tridgell has been involved in the Linux community since December
1992. He has worked on a number of projects, including DOSEmu, the “Linux in
Antarctica” project, some TCP hacks, and, more recently, Samba. He is currently
the convener of the Canberra Linux Users Group. Andrew and his wife Susan
live in Canberra and enjoy bushwalking, sailing, watching TV, speaking Swedish,
and eating pizza.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Samba—Unix Talking with PCs

Andrew Tridgell

Issue #7, November 1994

Linux Journal mentioned to Andrew Tridgell that we wanted to interview him
about his work with Samba, and he responded with this enlightening and
entertaining account of the development of the Samba package, answering all
the questions we had intended to ask before we could ask him.

The need to get the mainstream PC operating systems to talk amicably with
Unix has been around for a long time. Recently, yet another option has
emerged which takes a different tack from previous methods. I'm talking about
SMB for Unix.

The dominant file-sharing protocol in the Unix world is NFS. The dominant
protocols in the DOS/Windows/NT worlds are Novell and SMB. SMB is also
known as LanManager, although LanManager is really only one implementation
among many.

If you want Unix to talk to DOS, so that they can share file and print resources,
then there are basically two choices. The first is to make the PC look like a Unix
box by getting it to talk NFS. The second is to make the Unix box talk one of the
PC networking protocols.

The best choice for getting NFS on a PC is to run a PC Unix such as Linux. This,
however, is not a realistic option just yet for many PC users. The alternative is
to run an NFS client on the PC. The problem with this approach is that the NFS
protocol was never designed with PCs in mind. The security, administration,
and general utility of PC-based NFS clients is far from ideal.

Security ad nauseum

Just realising that providing NFS service from a Unix box to a PC allows the PC
to handle the authentication should make any sane system administrator “go
off his lunch”. The NFS protocol requires that the Unix box trust the PC

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

completely. In some implementations this is hidden behind the appearance of
a “login” procedure and password protection. Don't let it fool you. As I have
demonstrated on several occasions, any half-wit with access to the PC's console
can fool the Unix box into giving write access to just about anyone's files,
without the need for any passwords.

If that isn't enough, just try to administer a large bunch of PCs running NFS
clients. Nightmare!

So what about the other approach? Can you make a Unix box talk one of the PC
networking protocols? The short answer is yes. Products have been around for
some time for some Unix flavours to talk to PCs on their own terms. The
problem is that software vendors realise that this is a very useful thing to be
able to do, and charge accordingly. There must be a better way.

Samba

There is a better way. Samba is a free implementation of the SMB protocol for
Unix. The SMB protocol is the native file- and printer-sharing protocol for
Windows for Workgroups, LanManager, Windows NT and OS/2. The SMB
protocol is an X/Open standard and is in use on millions of PCs worldwide.

Before I tell you all about the current version of Samba and what it can do for
you, I'm going to indulge in a little history. There is probably a similar history
behind many other free software packages. They all start somewhere.

Some History

The whole thing really started in December 1991. I was (and still am) a PhD
student in the Computer Sciences Laboratory at the Australian National
University, in Canberra, Australia. We had just acquired a beta copy of the PC X
server eXcursion from Digital, and I was testing it on my PC. At this stage I was
an MS-DOS user, dabbling in windows.

eXcursion ran (at the time) only with Dec's “Pathworks” network for DOS. I had
until then been using PC-NFS to connect to our local Sun workstations, and was
reasonably happy with it. In order to run Pathworks, I had to stop using PC-NFS
and try using Pathworks to mount disk space. Unfortunately, Pathworks was
only available for Digital workstations running VMS or Ultrix, so I couldn't
mount disk space from the Suns anymore.

I had access to a DecStation 3100 running Ultrix that I used to administer, and I
got the crazy notion that the protocol that Pathworks used to talk to Ultrix
couldn't be that hard, and maybe I could work it out. I had never written a
network program before, and certainly didn't know what a socket was.

In a few days, after looking at some example code for sockets, I discovered it
was pretty easy to write a program to “spy” on the file sharing protocol. I wrote
and installed this program (the sockspy.c program supplied with Samba) and
captured everything that the Pathworks client said to the Pathworks server.

I then tried writing short C programs (using Turbo C under DOS) to do simple
file operations on the network drive (open, read, cd, etc.) and looked at the
packets that the server and client exchanged. From this I worked out what
some of the bytes in the packets meant, and started to write my own program
to do the same thing on a Sun.

After a day or so more I had my first successes and actually managed to get a
connection and read a file. From there it was all downhill, and a week later I
was happily (if a little unreliably) mounting disk space from a Sun to my PC
running Pathworks. The server code had a lot of “magic” values in it, which
seemed to be always present with the Ultrix server. It was not until two years
later that I found out what all these values meant.

I thought other people might be interested in what

I had done, so I asked a few people at uni, and no one seemed much
interested. I also spoke to a person at Digital in Canberra (the person who had
organised a beta test of eXcursion) and asked if I could distribute what I'd done,
or if it was illegal. It was then that I first heard the word “netbios”, when he told
me that he thought it was all covered by a spec of some sort (the netbios spec),
and thus what I'd done was not only legal, but silly.

I found the netbios spec after asking around a bit (the RFC1001 and RFC1002
specs) and found that they looked nothing like what I'd written, so I thought
maybe the Digital person was mistaken. I didn't realise that the RFCs referred
to the name negotiation and packet encapsulation over TCP/IP, and what I'd
written was really an SMB implementation.

Anyway, he encouraged me to release it, so I put out “Server 0.1” in January
1992. I got quite a good response from people wanting to use Pathworks with
non-Digital Unix workstations, and I soon fixed a few bugs, and released “Server
0.5”, closely followed by “Server 1.0”.

All three releases came out within about a month of each other.

At this point I got an X-terminal on my desk, no longer needed eXcursion, and
promptly forgot about the whole project, apart from a few people who e-mailed
me occasionally about it.

A year passed with just occasional e-mail asking about new versions and bugs. I
even added a note to the ftp site asking for a volunteer to take over the code as
I no longer used it. No one volunteered.

During this time I did hear from a couple of people who said it should be
possible to use my code with LanManager, but I never got any definite
confirmation.

One e-mail message I got about the code did, however, make an impression. It
was from Dan Shearer at the University of South Australia, and he said this:

I heard a hint about a free Pathworks server for Unix in the Net channel of the
Linux list. After quite a bit of chasing (and lots of interested followups from
other Linux people) I got hold of a release news article from you, posted in Jan
92, from someone in the UK.

Can you tell me what the latest status is? I think you might suddenly find a
whole lot of interested hackers in the Linux world at least, which is a place
where things tend to happen fast (and even some reliable code gets written,
BION!).

I asked him what Linux was, and he told me it was a free Unix for PCs. This was
in November 1992, and a few months later I was a Linux convert! I still didn't
need a Pathworks server, though, so I didn't do the port, but I think Dan did.

At about this time I got e-mail from Digital, from a person working on the DEC-
Alpha software distribution. He asked if I would mind if they included my server
with the “contributed” CD-ROM. This was a bit of a shock to me, as I never
expected DEC to ask me if they could use my code! I wrote back saying it was
OK, but never heard from him again. I don't know if it went on the CD-ROM.

Anyway, the next big event was in December 1993, when Dan again sent me e-
mail saying my server had “raised its ugly head” on comp.protocols.tcpip.ibmpc.
I had a quick look on the group, and was surprised to see that there were
people interested in this thing.

At this time a person from our computer center offered me a couple of cheap
ethernet cards (3c505s for $15 each) and coincidentally someone announced
on one of the Linux channels that he had written a 3c505 driver for Linux. I
bought the cards, hacked the driver a little, and setup a home network between
my wife's PC and my Linux box. I then needed some way to connect the two,
and I didn't own PC-NFS at home, so I thought maybe my server could be
useful. On the newsgroup, among the discussions of my server, someone had
mentioned that there was a free client that might work with my server that

Microsoft had put up for ftp. I downloaded it and found to my surprise that it
worked first time with my Pathworks server!

Well, I then did a bit of hacking, asked around a bit and found (I think from Dan)
that the spec I needed was for the “SMB” protocol, and that it was available via
ftp. I grabbed it and started removing all those ugly constants from the code,
now that all was explained. It was a shock seeing the real spec for SMB, and it
made me realise how lucky I was that my original code worked at all.

Samba Resources

On December 1, 1993, I announced the start of the “Netbios for Unix” project,
seeding the mailing list with all the people who had e-mailed me over the years
asking about the server.

At this stage I called the package smb-server. This changed quickly one
weekend when I got e-mail from a company that makes a commercial Unix
SMB-based server. Apparently they have trademarked that name. I needed a
new name quickly, and Samba was born.

This list has now grown to over 600 people and a newsgroup
(comp.protocols.smb) has just started, primarily because of peoples' interest in
Samba. I get approximately 100 connections to the Samba ftp site each day,
and dozens of dedicated hackers have contributed to the code. Samba is now
being used as a production PC file server at many sites worldwide.

Almost all of the development for Samba was done on my home Linux box.
Linux has been a fantastic development plaform. Without Linux, Samba would
certainly not be where it is today.

What Can It Do?

Now that I've got that off my chest, I better tell you what Samba can do. Not
that I expect anyone to still be reading after a tirade like that one.

Samba provides file and print services to SMB clients. These include
LanManager, Windows for Workgroups, Windows NT and OS/2. There is also a
free client for DOS put out by Microsoft, but it's a real memory hog.

Samba also provides a Netbios name server, so PCs can find the server, and a
Unix SMB client program. The SMB client only has a primitive ftp-like interface,
but a proper mountable SMB filesystem for Linux is in the works.

https://secure2.linuxjournal.com/ljarchive/LJ/007/2858s1.html

Samba uses quite a comprehensive configuration file mechanism written by
Karl Auer. Karl also did all the documentation for Samba, which I think has been
very important in its success.

Some features of the Samba server are:

• freely distributible source under GPL
• supports more than 20 flavours of Unix
• easy configuration
• supports mangled filenames with root name preservation
• much faster than NFS
• much more secure than NFS
• clients are pre-installed on many platforms
• most clients have auto-reconnect
• restrict access by username/password, by IP address or netgroup

There are a lot more bits and pieces. Samba has “suffered” from Karl's code
that allows me to easily add new options. There are now more than 60
configurable options in the server, which can be applied in endless
combinations for each exported file or print service. Thank god for Karl's man
pages.

Samba is being improved all the time. It is now a distributed development
effort with many active contributors. Upcoming versions are likely to include
full long filename support for those clients that can handle it (such as Windows
NT and Chicago), browsing support and a mountable SMB filesystem. Work is
also proceeding on a more complete RFC1001/1002 netbios nameserver
implementation.

Get it, use it. If it doesn't work for you, then remember how much it cost. Also
remember to send me a bug report.

Now I think I'll go and have some lunch.

Andrew Tridgell is an associate lecturer in the department of computer science
at the Australian National University in Canberra, Australia. He is also
completing a PhD in automatic speech recognition in the computer sciences
laboratory at the same university.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Linux Performance Tuning for the Faint of Heart

Clarence Smith, Jr.

Issue #7, November 1994

Recompiling your Linux kernel might not be as scary as you think. Clarence
Smith gives us a good step-by-step process for building your own customized
kernel.

Have you ever wondered why in the blazes someone would want to recompile
a Linux system kernel? For some, that is a challenging question. Many new
users to Linux are under the impression that when they install Linux, the
installation itself is perfect. Don't assume that Linux is set up efficiently for your
exact setup out of the box. Here's why (and how) to change it.

Let's say you have bought a new laptop, and you want to run Linux on it. You've
got only 4MB of RAM, and you've got only 100MB of hard drive space. A finely
tuned Linux kernel is key to having all possible memory space available on your
system, and thus is the key to having a faster system for a small-time
investment.

You are probably aware that Linux provides “virtual memory” (also known as
swap space or paging space) that allows programs to use more memory than is
really on the system by temporarily moving the contents of some of that
memory to disk. You may not be aware, however, that no parts of the kernel
can be paged out to disk. Every byte taken up by the kernel is a byte that can't
be used by anything else.

If the kernel you are running has SCSI support, networking, and sound all
compiled in, but you don't have or use SCSI, networking, or a sound card, you
are wasting memory. This is probably the case if your kernel came with your
Linux distribution, because those kernels are generally compiled to work with a
very wide selection of devices, and are not tuned to your hardware.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

If you only have 4MB of memory, you are also likely wasting a lot of time as
other programs get swapped out to disk and then back into memory. By
compiling a new kernel without the unnecessary pieces, you can make your
Linux computer run a lot faster.

Fortunately, Linux makes this easy.

Think First

First of all, you need to consider the hardware you have. What types of
peripherals do you have? What type of mouse do you have? Do you have a
sound card?

To build and compile the best kernel for your system, you must be aware of
your hardware make-up. You may find it helpful to sit down and list all the
parts of your computer. Not only will this help you now, but it will also help you
post good problem reports if you encounter a problem or bug, since you need
the same information about your configuration when posting problem reports.

To configure your system, you first need to have the Linux source code installed
on your system. This is available via ftp from nic.funet.fi in /pub/OS/Linux/

PEOPLE/Linus, tsx-11.mit.edu in the directory /pub/linux/sources/system, or
sunsite.unc.edu in /pub/Linux/kernel, or other mirrors around the world. The
directory name will depend on the kernel version: Linux versions 1.1.x are kept
in the v1.1 directory, and have names like linux-1.1.45.tar.gz, with patch named
like patch46.gz. You only need to get patches with numbers later than the
version of the tar file you get.

Alternately, if you bought Linux from someone, they are required by Linux's
GPL copyright to have provided the source, or to provide it (possibly for a
nominal fee) upon request.

The source code should be unpacked into /usr/src/linux, because it expects to
be there. See the sidebar “Unpacking the Linux Source” if you do not know how
to do this.

After unpacking the source, you should apply any kernel patches that are
needed to get the version you want. You should insert your patches (while they
are still compressed, or gzipped) into /usr/src/linux. Then from /usr/src/linux,
type:

gunzip -c patch?.gz | patch -s -p1gunzip -c patch??.gz | patch -s -p1

The ? gets patches 1-9 in order, and should be done only if you are using one of
those patches. The ?? will get all patches (that exist, and that you have

downloaded) between 10 and 99 in order. It is important that all the patches be
applied in order. The -s argument to patch tells patch to work silently, and only
complain about errors. The -p1 tells patch that we are in the /usr/src/linux

directory, so that it knows how to find files, and puts new files in the right place.
The -s flag is optional; the -p1 argument is mandatory.

Alternately, you can run each patch separately:

gunzip -c patch8.gz | patch -p1gunzip -c patch9.gz | patch -p1...gunzip -c

patch46.gz | patch -p1

and so on.

Once you've completed the patches, you may want to remove any unnecessary
files created by the patches. These files are the original versions of the files that
are changed in any way, so they can take up a substantial amount of space. You
can find and remove them by typing:

find /usr/src/linux -name '*.orig' -o -name '*~'-exec rm -f {} ;

You can look for any files that did not patch correctly, and thus find out in
advance that there has been a problem that will likely make it impossible to
compile your kernel, by typing:

find /usr/src/linux -name '*.rej' -print

That will list any files for which there were “rejected hunks”; patches that could
not be fitted into the source correctly. If you find any of these files, start over. If
you still see these files, ask someone for help; there are too many things that
could be wrong to cover in this article.

Configuring the Kernel

Now, from within /usr/src/linux, type make config. You are now prompted to
answer many questions about your system. If you say you don't have hardware
that you do have, that particular hardware will not be supported by the new
kernel. Likewise, if you say you have hardware that you don't have, you will
waste memory. Also, you want to enable only the software features that you
are going to use.

I will attempt to point out some of the most significant configuration questions.
One of the first questions is:

'Kernel math emulation' CONFIG_MATH_EMULATION ?

If you don't have a math co-processor, you should answer this question YES.
Those who do have a math co-processor chould answer NO. A kernel with
math-emulation compiled in it will still use the processor if one is present. The
math-emulation simply won't get used in that instance. This will result however
in a somewhat larger kernel and a waste of memory.

There are a couple of questions about hard disk support. One in particular can
cause a bit of confusion:

'XT harddisk support' CONFIG_BLK_DEV_XD

I answer this question NO. This really doesn't have to do with hard disks—it has
to do with your controller card. AT controller cards are 16-bit cards supported
by the standard hard disk driver. XT controller cards are 8-bit cards that are
very rare in 386-class machines.

'TCP/IP networking' CONFIG_INET :

Answer YES if you plan to have your system interactive on the net. This includes
SLIP and PPP connections. Answer NO if you aren't going to connect to the net
right now; you can always compile another kernel later.

'System V IPC' CONFIG_SYSVIPC :

This isn't used for many things, but doesn't use much memory. YES is
recommended.

'Use -m486 flag for 486-specific optimizations' CONFIG_M486 :

If you have an i386 system, answer NO. Otherwise you should select YES. This
uses a little bit of memory. Adding this flag will not slow a 386 down, other than
using extra memory, but will speed up a 486 quite a bit.

Types of Devices

There are a series of questions which have to do with different types of SCSI
drivers and interfaces. If you have a SCSI controller, then you would want to
enable the drivers via the configuration process. For those who don't have a
SCSI controller, select NO, and move on to the next step in the configuration. If
you don't select SCSI support, you won't be asked whether or not to include
SCSI devices.

Network device support mainly has to do with selecting the proper Ethernet
device or other network connection. PPP and SLIP are used to connect to TCP/
IP networks over the serial port; PLIP is used to connect TCP/IP networks over

the parallel port, and the rest are ethernet controllers. Do not select drivers of
devices you do not have. This can sometimes cause conflict later when you are
booting.

Another important section in the kernel config process has to do with the
different filesystems. There is an advantage to compiling the kernel to have
only the filesystems you need. There are several different filesystems
supported by Linux:

'Standard (minix) fs support' CONFIG_MINIX_FS :

This is the original Linux filesystem. It is considered to be one of the more
stable filesystems, and is still widely used. You probably want this unless you
are really desperate for space or will really never use it.

'Extended fs support' CONFIG_EXT_FS :

Only select this if you still have filesystems from the 'old days' that will use this
precursor of the second extended filesystem. This filesystem is slow and no
longer actively maintained. It is there only for backwards compatibility. NO.

'Second extended fs support' CONFIG_EXT2_FS :

The ext2 filesystem is the most 'full-featured' of the filesystems. It is a super
rewrite of the original extended filesystem, with improved speed as well. This is
by far the most popular filesystem. A filesystem debugging package is available
for this filesystem that can help you recover from fairly bad filesystem crashes.
YES.

'xiafs filesystem support' CONFIG_XIA_FS :

This is a modification of the Minix filesystem (allowing for such things as longer
filenames). If you plan to use it (YES), otherwise (NO).

'msdos fs support' CONFIG_MSDOS_FS :

This filesystem allows for access to the FAT filesystem used by MS-DOS. It is a
great advantage for those who need to access floppies or hard disk partitions
that use that filesystem. In addition, if you use the UMSDOS filesystem (usually
because you installed Linux on an MSDOS partition), you need to include
MSDOS filesystem support.

'/proc filesystem support' CONFIG_PROC_FS :

The PROC filesystem does not touch your disk. It is used by the kernel to
provide data kept within the kernel itself to system programs that need that
information. Many standard utilities will not function without this filesystem.
YES.

'NFS filesystem support' CONFIG_NFS_FS :

The NFS filesystem is necessary for those who have a physical network and
need to mount NFS filesystems from other computers. If you are on a TCP/IP
network, you probably want this option. Otherwise, you don't.

Possible Confusion

'Kernel profiling support' CONFIG_PROFILE :

This is used only by seasoned kernel hackers. You don't need this if you need to
read this article...

'Selection (cut and paste for virtual consoles)' :

Self explanatory. If you want to be able to use your mouse in any of your VC's,
then you would select YES. Note that this requires a separate selection program
to work. Your mouse will be inactive without this program. This has nothing to
do with X-windows.

Sound Tricks

The last section of the configuration process that needs insight has to do with
sound card options. If you want sound card support, then you would definitely
select YES. The confusing part are the next two questions; confusing because of
the order they fall in.

Full driver? NO. I select NO because I want to configure my kernel to handle
only my particular sound card. I don't want to enable drivers for cards I don't
have. This simply wastes space.

Immediately following is: Disable? NO. It seemed strange to me that the driver
question would come before a question about disabling the sound drivers
altogether. Nonetheless, you should select NO, and answer the questions that
follow accordingly, depending on what hardware you have.

That was the last part of the configuration process. All that remains is to make
the system dependencies. After that, the actual kernel compile!

Making System Dependencies

There isn't any confusing part about making the dependencies. All you do is
type make depend (in the /usr/src/linux directory, which you should already be
in); this sets up the system dependencies that all the files have. This allows
make to intelligently recompile only the right files if you have to make changes
to the source code.

Compiling the Kernel

After the system dependencies have been created, you are ready to compile
the newly configured kernel. At this point, you should type make zImage to
create a compressed kernel. This helps in the process of keeping your kernel
small. Depending on the speed of your machine, the amount of memory you
have, and how many things you are compiling into your kernel, your compile
could take anywhere from around 15 minutes on a fast 486 or Pentium to
several hours on a slow 386sx with 4MB of memory.

When the compiling process is complete, you will find a newly created kernel,
zImage, in the /usr/src/linux directory. The process of installing the new kernel
however is not yet complete. If you reboot right now, even though you have
compiled a new kernel, you will still boot your old kernel. You still need to
install the new kernel.

Installing the New Kernel

Before you install the new kernel, you should rename your old kernel, so that
you can use it in the case of an emergency. In the / directory, there should be
an image of your old kernel (zImage). Simply rename it to zImage.old using the
mv command. This will be useful in the event that your new kernel will not boot
up; you at least have a backup that still allows for a functional system.

Now, you must edit (if necessary) the LILO configuration file, so that it will
accept your new kernel. It is most often found in the file /etc/lilo/config, but
may be found as /etc/lilo.conf. Basically, editing the configuration file and
running lilo tells the LILO which kernel to use upon bootup. The first image to
be set up in the config file will be the default. By putting the new kernel image
first, we will ensure that the new kernel boots by default; if we were to put the
DOS entry first, DOS would boot by default. Here's an example:

boot = /dev/hda

#This is the path to the NEW kernel image to be bootedimage = /zImagelabel =
linux

#This is the path to the OLD kernel image to be booted#if the other should fail
to bootimage = /zImage.oldlabel = linux.old

#This is the path to the DOS operating systemother = /dev/hda1table = /dev/

hdalabel = dos

Once you've edited the configuration file, copy or move the new kernel image
to the / directory. Make sure that /zImage and /zImage.old are present before
going any further. Next, you need to go back into the /etc/lilo directory and type
./lilo to run lilo. Alternately (if /etc/lilo doesn't exit), you may need to cd to /etc

and run /sbin/lilo. In either case, this is the “installation” step which makes it
possible for you to boot your new kernel.

You are now ready to boot your new kernel. To do this, type shutdown -r now.

If you have not installed your new kernel as the default kernel by making it the
first entry in /etc/lilo/config, you will need to manually select your new kernel as
you boot up. You activate the LILO menu by pressing <shift>, <control>, or <alt
keys> as LILO is starting, or by pressing the <CapsLock> or <ScrollLock> key
before LILO starts.

At the LILO prompt, make sure you type the label of the image, and not the
filename of the image. If LILO can't find the image you ask for, it will tell you.
Typing ? will give you a list of labels to choose from.

During the boot process, be sure to look at the information that relates the
version of the kernel being booted, and the day that it was compiled (it's all on
the same line). Mine looks like this:

Linux version 1.0.9 (root@HoMiEz.ShOpPiN.NeT) Thu Jul 14 22:45:16 1994

This particular line tells which version of the kernel is being booted, and the
date and time that it was last compiled. The information shown here should
coincide with the compile process you just recently completed. If there is an
inconsistency, be sure to check your /etc/lilo/config file. Make sure that you put
the proper label name for the particular table on the hard drive.

Once the new kernel is booted, you are free to hack away. Kernel compiling can
be a confusing process. Some new administrators are intimidated by compiling
a new kernel, but it is a prerequisite to running an optimized system. After a
few kernel upgrades, you can become skilled in maintaining your system
optimally. Then you can pass that knowledge to those who are as unsure as
you once were. Remember, the more you know about your own system, the
more optimized you become in using it.

Unpacking the Linux Source

Before you unpack the kernel source, it is a good idea first to backup you old
kernel. You should do this, just for the moment, until you completely get the
new kernel functioning properly. You can even shrink the size of the old kernel
source by using tar and then compressing it. It is better to use both, as a double
strength method:

cd /usr/srctar cvf linux-old.tar linuxgzip -9 linux-old.tar

The resulting file should be linux-old.tar.gz. After you've done this, it is safe to
remove the old source directory by typing:

rm -rf linux

After you've done this, you can uncompress the new kernel. You must first
move the new kernel source to /usr/src. Then type the following:

gunzip -c new-kernel-name.gz | tar xvof -

Once this process is complete, you are ready to move on. I'd also suggest
keeping the new compressed kernel source in a backup directory. This way, if
an error occurs in the process of upgrading and compiling your new kernel, you
always have un-patched, “virgin” source to start over with. This eliminates the
time it takes to download the kernel source again and also leaves you more
time to concentrate on the task at hand.

Kernel Resources

The kernel sources are available at a large number of Linux ftp sites, including
sunsite.unc.edu in /pub/Linux/kernel, tsx-11.mit.edu in /pub/linux/sources/

system, and nic.funet.fi in /pub/OS/Linux/kernel/src. Kernel sources stored at
these sites are typically gzipped tar files with filenames of
linux-version.tar.gz.

If you got Linux from a distributor, they may have already given you the kernel
source. If they haven't, they are required by the GNU General Public License to
make it available to you.

Clarence Smith, Jr. is a student at the University of Washington, working on a
Public Relations and Sociology degree. He hopes to develop an increased
knowledge of the Linux Operating System by the development of some useful
software tools. Clarence lives by the hacker ethic of striving for perfection,
based on a beutiful line of code and functionality.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Selecting Hardware for a Linux System

Phil Hughes

Issue #7, November 1994

In this article Phil Hughes describes the basics of choosing a hardware platform
for Linux.

Although Linux software is virtually free, the required hardware isn't. This
makes some people hesitate to jump into the Linux movement. But it doesn't
need to be complicated, scary or expensive. Linux runs on most common
hardware. In this article I will point out how to make the right choices and
hopefully keep you away from costly mistakes. If you currently have a system
that adequately runs MS-Windows, you probably have all you need for a decent
Linux system. Although Linux is more sophisticated than MS-Windows, it
doesn't require more hardware. In fact, because Linux is a pre-emptive multi-
tasking system (this means that programs can be interrupted to service other
requests), you can get a lot more useful work from the same computer. Before I
get into specifics, I would like to point out that there is a lot of documentation
on Linux. This includes HOWTOs which detail many of the specifics. These
HOWTOs are available at Linux archive sites on the Internet, on most CD-ROM
Linux distributions and on paper from various sources. A short article is no
substitute for the details presented in the HOWTOs. I highly recommend that
you get a copy and that you read them.

CPU and RAM

To run Linux you need a 386 or higher processor. For text-based applications
even a slow 386SX system will perform very well. Although the Linux kernel is
capable of emulating floating point arithmetic functions, it is significantly slower
than a math co-processor; either in the form of a separate chip or a 486DX or
better that has a built-in co-processor. The server system at the Linux Journal
advertising/editorial offices is a 386DX40. It has proved to be a great performer
with three high-speed modem lines connected to it, a local user and 2 or more
active telnet sessions. It has 8MB of RAM but an upgrade to 16MB is planned.
The system we use for running X-windows is a 486DX33 with 16MB of RAM. The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

built-in co-processor and additional RAM make this an excellent workstation for
compute-intensive work. Linux needs a system that is based on the ISA (AT) or
EISA bus. Linux does not support MicroChannel Architecture (MCA) machines
such as the IBM PS/2. It does, however, support local bus systems such as VESA
and PCI. What you need will depend on what you intend to do with the system.
The minimum RAM is 4MB. If you currently have a 386SX with 4MB of RAM, give
it a try. It may do all that you want with no investment. If, however, you need to
purchase hardware to run Linux, look at higher performance systems such as
something based on a 486DX chip and at least 8MB of RAM. The additional cost
is not very great for a large performance increase.

Disks

There are two considerations: type and size. Linux supports MFM, RLL, ESDI and
IDE disks with virtually any controller board. It also supports a fairly wide
assortment of SCSI controllers. If you already have a system, you can probably
stick with what you have. But, if you are purchasing new hardware, SCSI disks
are well worth considering. Here's why: Many of the supported SCSI disk
controllers use direct memory access (DMA) to transfer information. Under MS-
DOS this has little advantage because MS-DOS (and MS-Windows) waits for
input/output operations. On Linux, however, processing is overlapped with I/O.
This means that a DMA controller can be transferring data while the CPU is
processing other tasks. One of the most popular controllers supported by Linux
is the Adaptec AH-1542C. It is relatively inexpensive ($200 range), uses DMA
and has reasonable performance. For EISA bus systems, the AH-1742 may be
used. If your system has a VESA local bus, the Buslogic 445S controller seems to
offer the best performance at a reasonable cost. Other supported SCSI
controllers include the Adaptec 152x series, Allways IN2000, Adaptec 1542
clones (including Buslogic 445S and 447S and DTC 3290 and 3292), Seagate
ST01 and ST02, Western Digital 7000, Trantor T128 and T130B, Ultrastor 14F
and 24F. The SCSI HOWTO has many details that will help you weigh the costs
and performance of the various SCSI controllers. Another consideration when
choosing between IDE and SCSI disks is that you can have two disks with IDE
controllers and with SCSI you can have up to seven. Selecting the disk size
requires some forethought about what applications you'll be running. The price
of disk storage is dropping, and you can add one or more disks later on
(depending upon your disk type). Linux can run on as small a partition as 20MB,
but 200MB is a common size. Some applications may require disk sizes of 1GB
or more.

CD-ROM

If you have a SCSI disk controller, a SCSI-based CD-ROM drive makes the most
sense. It plugs into the same controller and works fine. With the advent of
double and triple-speed CD-ROM drives, prices have dropped significantly on

the single-speed drives which are adequate if all you intend to do is load files
from a distribution CD-ROM. And prices for these devices on the surplus
market seem to be in the $50-$80 range. If you are not using SCSI disks, using a
non-SCSI CD-ROM is more cost-effective. Although others are supported, drives
made by Mitsumi (and marketed under many names including BSR and Tandy)
work well. They include their own controller card and can usually be found in
the $150 price range.

Printers

There is nothing special about Linux and printers. Standard parallel port
connections are supported as well as serial port connections for printers. If you
have a PostScript laser printer there are programs included with most Linux
distributions that support these devices directly. If you don't have a PostScript
printer, ghostscript, a program that comes with most Linux distributions, will
translate PostScript into the necessary control codes for most printers. If you
choose this options, be aware that ghostscript's default fonts are not as pretty
as the fonts that come with a PostScript printer.

Serial Communications

Serial devices which include mice, modems and terminals can be connected to
the system. Because Linux is multi-user as well as multi-tasking, multiple
people can be using the computer system at one time. Most MS-DOS systems
come with two serial ports. Linux can use these ports but you may want
additional ports to support multiple devices. Serial communications boards
come in various flavors. The standard 2-port board that comes in most systems
uses 16450 UARTs (Universal Asynchronous Receiver Transmitters). This UART
has no buffering which means the CPU must stop what it is doing and grab
each input character. For one line running at 38,400 bits per second, this means
that the processor could have to get a character about every .00025 seconds.
With multiple ports this could consume most of the CPU time and result in
dropped characters. The 16550A UART is very similar to the 16450 except it has
a built-in 16 character buffer. This means that the processor could fetch
characters 1/16th as often and still get all the input data. The difference in price
is not that big between boards based on the 16450 and 16550A so it is well
worth considering. Also, it is possible to replace the 16450s with 16550As in
boards where the UARTS are in sockets. If you are considering adding ports,
there are various 4, 8 and 16-port boards that use 16550As and support
interrupt sharing. This means that up to 16 ports could be configured all on one
board using one interrupt line on the bus. There are other serial
communications boards that Linux supports or will soon support. Intelligent
serial boards are boards that contain an on-board CPU. This CPU handles
specifics of the serial transfer, freeing up more of the main CPU. They vary from
boards with “intelligent UARTS” to those that include a general- purpose CPU

and DMA I/O. Many manufacturers including Spectrix, Stallion, Computone,
Arnet and DigiBoard make these boards. They require special drivers and, at
this time, the only one supported is the Cyclades 8Y, which uses Cirrus Logic
RISC chips. Performance-wise, these boards should offer better performance
than the 16550A-based boards. An alternative to serial communications boards
is a terminal server. This is a device that connects to the host system via
Ethernet and handles serial communications itself. Any terminal server that
supports the TCP/IP protocol should work with a Linux system.

Getting HOWTOs via FTP

Networking

Linux has built-in support for networking including TCP/IP and NFS. If you
already have a network that supports TCP/IP protocol (used by Unix and other
systems) you should be able to add your Linux box to the network. The one
piece of hardware you will need is an Ethernet adapter. Ethernet comes in
three flavors: thick-net, thin-net and UTP. Thick-net is thick coaxial cable where
you connect to it via a tap and a transceiver with an AUI interface. Thick-net was
the original but is no longer very popular. Most common today is thin-net, with
UTP running second. Thin-net consists of machines connected on a single line
of RG-58 coaxial cable. Each machine is connected using a BNC T-connector.
Each end of the line is terminated with a 50-ohm terminator. Adding a new
computer means either adding to the end of the line and moving the
terminator along or splitting an existing cable and adding a new T. UTP
(unshielded twisted pair) uses a different configuration. You have a hub and
then the systems fan out from the hub. They are also called 10baseT where the
T stands for twisted pair. Generally, thin-net is the least expensive, most
practical approach. There are a large number of Ethernet boards out there. If
you are looking for the quick answer; reasonable cost, reliability and
reasonable performance, the WD8013 or SMC8013 card is a good choice. Other
cards that generally work are NE2000 clones and the 3Com 3c503. Again, the
Ethernet-HOWTO contains much more helpful information than I can include
here.

Video

Character-based Linux applications will work with any video board available for
the PC. If, however, you want to run X-windows, you will need to select a
supported video board. Although there is nothing difficult about supporting
any boards, some manufacturers have refused to make the specifications
available; therefore, Linux drivers could not be written for their hardware. One
major vendor who has not released specifications (and is therefore not
supported) is Diamond. The most cost-effective accelerated video boards
supported by Linux are the low-end S3 boards. STB and Orchid are two vendors

https://secure2.linuxjournal.com/ljarchive/LJ/007/2850s1.html

who have cards available for about $130-$150 that will be adequate for almost
all Linux users. High-end S3 and ATI boards which are supported are available
in the $350-$500, and will increase your video performance. You will want to
check the XFree86-HOWTO for more current details when you are making your
decision.

Low-End Configuration and High-Performance Systems

Conclusion

Shopping for Linux hardware isn't harder than shopping for DOS/Windows
hardware. If you are comfortable selecting video boards and talking about RAM
chips, you should have no problem selecting what you need. On the other
hand, if you don't want to know what a SCSI is, you may be better off to let
someone else pick the hardware for you. Much like picking DOS/Windows
hardware, define what you want to do; what sort of things you will be running
on the computer system. Then give your requirements to a Linux-
knowledgeable hardware vendor and see what they have to offer. Whether you
do your own hardware selection or just get some ideas from this article and let
someone else pick, expect the end result to be a real Unix-like com-puter
system; for your work, for fun or for both.

Phil Hughes is the publisher of Linux Journal, and has put together a few Linux
systems in his time.

Phil Hughes is the publisher of Linux Journal, and has put together a few Linux
systems in his time.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/007/2850s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CD-ROM and Linux

Jeff Tranter

Issue #7, November 1994

A CD-ROM drive is one of the most popular hardware upgrades for personal
computers and is becoming a standard peripheral for new systems. In the
article, Jeff looks at support for CD-ROM under Linux.

CD-ROM stands for Compact Disc Read-Only Memory, a storage medium
utilizing an optical laser to read microscopic pits on the aluminized layer of a
polycarbonate disc. The same format is used for audio compact discs.

The storage capacity of a CD-ROM is approximately 650MB, equivalent to over
500 high density 3.5" floppy disks or roughly 250,000 typed pages.

First-generation drives (known as single speed), provide a transfer rate of
approximately 150KB (kilobytes) per second. Double-speed drives are
commonly available, and triple- and quad-speed drives have recently been
introduced.

Most CD-ROM drives use either the Small Computer Systems Interface (SCSI) or
a vendor-proprietary interface (which is often provided on a sound card). They
also typically support playing audio CDs via an external headphone jack, line-
level output, or speakers. A third type of CD-ROM interface, based on an
extension of the IDE hard disk interface, has also recently become available.

CD-ROMs are usually formatted with an ISO-9660 (formerly called High Sierra)
file system. This format restricts filenames to the MS-DOS style (8+3
characters). The Rock Ridge Extensions use undefined fields in the ISO-9660
standard to support longer filenames and additional Unix-style information
(e.g., file ownership, device files, symbolic links, etc.).

Photo-CD is a standard developed by Kodak for storing photographic images as
digital data on a CD-ROM. Photographic film can be transferred to a Photo-CD
and, with appropriate software, you can view the images on a computer,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

perform further image processing, or send them to a printer. Up to 100
photographs can be stored on a CD with an image quality that is typically much
higher than can be obtained using other methods, such as scanners.

CD recorders have recently become available. They use a different media and
specialized equipment for recording, but the resulting disc can be read by any
CD-ROM drive. (This is the same “write once” technology used for Photo-CD.)

The Advantages of CD-ROM

The primary advantages of CD-ROM over other mass- storage media are its
high storage capacity, high reliability, and low cost.

The drawbacks are that it is read-only, slower-than-hard-disk media, and the
discs can be damaged if mishandled.

Linux provides good support for CD-ROM. The dynamic buffer cache used for
the hard disk subsystem is also used for CD-ROM access, improving
performance. Depending on the type, multiple drives can be supported. (The
Panasonic driver, for example, supports up to 16 drives.)

Linux fully supports the Rock Ridge Extensions to the ISO-9660 file system,
making all of the features of the hard disk file systems available, including long
filenames, file permissions, links, and device files. PhotoCD is also supported by
some of the CD-ROM drivers.

Many vendors (I know of at least ten) are now offering CDs of Linux source
code, binaries, and documentation at reasonable prices. Many of these feature
easy to use menu-driven installation programs. A single CD-ROM can hold a full
Linux distribution, as well as all of the files from the two major Internet archive
sites, with room to spare. By comparison, a recent Linux distribution can fill as
many as 50-3.5 inch floppies.

Finally, most CD-ROM drives support playing audio CDs, so you can listen to
music while waiting for the latest Linux kernel to compile.

Supported Hardware

Linux supports virtually all SCSI CD-ROM drives, provided that a supported SCSI
host adaptor is used.

Many of the popular proprietary drives are supported, including models
produced by Sony, Mitsumi, and Panasonic/Matsushita.

CD-ROMs based on the enhanced IDE standard are not yet officially supported
by Linux, although at the time of this writing, at least one driver is in alpha
testing.

By the time you read this, more devices will likely be supported, either as part
of the standard Linux kernel or as patches. See the CD-ROM HOWTO document
for a detailed list of the latest supported hardware.

Configuring Linux for CD-ROM

Setting up Linux to use a CD-ROM involves four steps:

1. Installing the hardware
2. Configuring the Linux kernel
3. Creating the necessary device files
4. Mounting the media

I will cover them briefly here; see the Linux CD-ROM HOWTO for more details.

The first step, installation, is dependent on the type of drive. Follow the
instructions provided by the manufacturer or have the installation performed
by your dealer. There are no special installation requirements for Linux.

Next, the Linux kernel must be configured. In some cases, you may be able to
use a pre-compiled kernel that has the necessary drivers, but I recommend
compiling it yourself; it will do you good! For SCSI drives you need to configure
in SCSI CD-ROM support and the driver for the SCSI host adaptor being used.

For the proprietary CD-ROM interfaces, select the appropriate driver (e.g., Sony
CDU31A).

In order to mount CD-ROMs, you must also configure in support for the
ISO-9660 file system. If you have a sound card, now would be a good time to
configure the kernel sound driver as well.

The third step is to create the appropriate device files. If you are running a
standard Linux distribution you may have already done this during system
installation. It's a good idea to verify these; the CD-ROM HOWTO lists the device
file types, which are drive dependent.

You should now be ready to compile and boot the newly configured kernel.
Verify that the CD-ROM was detected by looking at the kernel boot messages;
here is the output on my system:

SBPCD version 2.5 Eberhard Moenkeberg <emoenke@gwdg.de>
 SBPCD: Looking for a SoundBlaster/Matsushita CD-ROM drive
 SBPCD: Trying to detect a SoundBlaster CD-ROM drive at 0x230.
 SBPCD: - Drive 0: CR-562-x (0.76)
 SBPCD: 1 SoundBlaster CD-ROM drive(s) at 0x0230.
 SBPCD: init done.

Using a CD-ROM

To mount a CD-ROM, insert it in the drive and use the mount command (as
root). A typical command line is the following:

% mount -t iso9660 -r /dev/cdrom /mnt

The example above assumes that the CD-ROM device file is /dev/cdrom and the
disc is ISO-9660 formatted (this is almost always the case). The -r option
indicates that the disc is to be mounted read-only. If successful, the CD can now
be accessed under the directory /mnt.

For a more permanent setup, you may wish to mount the CD under a more
meaningful name such as /cdrom. By adding an entry to the /etc/fstab file you
can have a CD-ROM automatically mounted when Linux boots; see the fstab(5)
man page for details.

When finished with the CD, it can be unmounted using the umount command
(again, run this as root):

% umount /mnt

If you want to allow non-root users to mount and unmount CD-ROMs, you can
use the “user” option provided by some mount commands. If you make an
entry such as the following in /etc/fstab:

/dev/sbpcd /cdrom iso9660
user,noauto,ro

then an ordinary user will be permitted to mount and unmount the drive using
these commands:

% mount /cdrom
% umount /cdrom

The disc will be mounted with some options that help ensure security (e.g.,
programs on the CD cannot be executed and device files are ignored). Another
method is to obtain or write a program such as usermount which runs setuid to
root and allows restricted mounting of specific devices (e.g., CD-ROM and
floppies) for non-root users.

PhotoCD

PhotoCDs use an ISO-9660 file system to store image files in a proprietary
format, at several different resolutions. Not all CD-ROM drives support reading
PhotoCDs. If yours does, you can mount it and use a program such as
hpcdtoppm to convert the files to a format that can be displayed using graphics
file viewers such as xloadimage or xv.

The hpcdtoppm program is part of the PBM (portable bit map) utilities,
available on many Internet archive sites (look for pbm or netpbm).

The program xpcd is an X11-based utility for manipulating PhotoCD images.
You can select the images with a mouse, preview them in a small window, and
load the image with any of the five possible resolutions. You can also mark a
part of the image and load only the selected part. This program can be found at
ftp.cs.tu-berlin.de in the file /pub/linux/Local/misc/ xpcd-0.2.tar.gz.

Playing Audio CDs

Several programs are available that allow playing audio CDs, either through a
headphone jack or an attached sound card. workman, supplied with many
Linux distributions, is one such program. It sports a graphical user interface
that resembles the controls provided on audio CD players. Simple command-
line CD player programs also exist. Note that to play an audio CD you should
not try to mount it.

The CD player programs simply route the analog output of the drive to an
external device. Some CD-ROM drives also support reading the digital sound
data contained on audio CDs. Using a program such as cdda2wav you can save
audio tracks from a CD-ROM as a sound file (e.g., in .wav format).

Inheriting File System

The Inheriting File System (IFS) is a kernel driver that allows mounting multiple
file systems at the same point. By mounting a hard disk directory over a CD-
ROM file system, you can effectively obtain a writable CD-ROM file system.

At the time of this writing, an experimental version of IFS, written by Werner
Almesberger for the 0.99 Linux kernel, is available as a kernel patch.

Creating CD-ROMs

If you want to create your own CD-ROM, either by using a writable CD drive or
sending a tape to a vendor to be mastered, there are some tools available
under Linux that you can use.

The mkisofs package allows creating an ISO-9660 file system on a disk partition.
This can be used to assist in creating and testing CD-ROM file systems before
mastering discs.

There are also some utilities available for verifying the format of ISO-9660 file
systems; these can be useful for checking suspect CD-ROMs.

Getting the CD-ROM HOWTO

Common Problems

If you encounter problems setting up CD-ROM support under Linux, here is a
list of things to check for. (See the CD-ROM HOWTO for more information.)

• Are the appropriate CD-ROM driver(s) compiled in the kernel? Try the
command cat/proc/devices to see which drivers are installed.

• Are you running the newly configured kernel? Use uname -a and check the
time-stamp to see.

• Is the drive recognized at boot time? The dmesg command should
redisplay the boot messages if they scroll by too quickly to read.

• Did you create the proper device files and set protections? The /dev/

MAKEDEV script is one way to do this.
• Is the ISO-9660 file system compiled in the kernel? Try cat /proc/

filesystems and look for iso9660.
• Is there a known good CD-ROM (not audio CD) in the drive?
• Did you use the correct options to mount? You need to specify -t iso9660,

-r (read-only), the CD-ROM device file, and an empty directory. You should
run this as user “root”.

• Can you read data from the drive? Try using the dd command and
checking for disk activity (e.g., dd if=/dev/cdrom of=/dev/null bs=2048).

For some drives, if they are located at a non-standard I/O address, you may
need to edit the appropriate kernel driver header file.

Getting IFS

For More Information

Here are a number of additional useful sources of information related to CD-
ROM under Linux.

The Linux CD-ROM, SCSI, and Distribution HOWTO documents are freely
available from major Linux archive sites, including sunsite.unc.edu in the
directory /pub/Linux/docs/HOWTO. For those without network access, printed

https://secure2.linuxjournal.com/ljarchive/LJ/007/2851s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/2851s2.html

copies of the Linux HOWTOs are also published by a number of vendors, or you
may be able to find them on a local computer bulletin board system.

The latest and most complete information on the Panasonic/SoundBlaster CD-
ROM kernel driver can be found in the file README.sbpcd, usually found in the
directory /usr/src/linux/drivers/block.

Additional information on commands such as mount and umount can be found
in the corresponding Linux man pages.

For those with access to Usenet, the following news groups discuss information
related to CD-ROM:

• comp.publish.cdrom.hardware
• comp.publish.cdrom.multimedia
• comp.publish.cdrom.software
• comp.sys.ibm.pc.hardware.cd-rom
• alt.cd-rom
• alt.cd-rom.reviews

A Frequently Asked Questions (FAQ) document for the alt.cd-rom newsgroup is
also available; it is archived on many Internet sites including rtfm.mit.edu.

The Internet site ftp.cdrom.com has a large archive of CD-ROM information and
software; look in the directory /pub/cdrom.

The Linux Documentation Project has produced several books on Linux; the
most useful for new users is Linux Installation and Getting Started. These are
freely available by anonymous FTP from major Linux archive sites or can be
purchased in hard-copy format.

The Linux Software Map (LSM) is an invaluable reference for locating Linux
software, including the programs mentioned in this article. The LSM can be
found on various anonymous FTP sites, including sunsite.unc.edu:/pub/Linux/

docs/LSM.gz.

(Jeff.Tranter@Software.Mitel.com) is a software designer for a
telecommunications company in Ottawa, Canada. He has been using Linux for
almost two years and is the author of the Linux Sound and CD-ROM HOWTO
documents.

Archive Index Issue Table of Contents

 Advanced search

mailto:Jeff.Tranter@Software.Mitel.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Linux User Group News

LJ Staff

Issue #7, November 1994

Linux Journal would like to promote and support user group meetings, and
plans on having a column dedicated to LUGs.

Is there a Linux User Group meeting in your area that you attend? Would you
like to find one? Would you like to start one? Linux Journal would like to
promote and support user group meetings, and plans on having a column
dedicated to LUGs. We'd like to include both announcements of meetings and
perhaps brief summaries, too, as space permits. Also, since Linux Journal does
have some readers who aren't yet connected to the Internet, please provide
contact information other than e-mail addresses in your submissions. Thanks!

TLUG

Toronto, Canada

The inaugural meeting of the Toronto Linux User's Group was held on August
31, at 7pm. The North York Public Library at 5120 Yonge Street was the location
of the event. If you'd like more information about this LUG, please send e-mail
to Laszlo Herczeg at las@light-house.gts.org.

BUUG

Belgium

One hundred copies of Linux Journal were ordered for the September 10th
meeting of the Belgian Unix systems User's Group. We didn't get any further
information about what they did at this meeting, but you might be able to find
out from Jan Vanhercke at java@java.be.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

PLUG

Phoenix, AZ

The PLUG (Phoenix Linux User's Group) had their August meeting at the
Arizona Center Food Court at 11:45am on the eleventh of August. Highlights
included an InfoMagic CD give-away and a report from “The Other Side” (i.e.,
NetBSD). For more information send e-mail to plug@tsiung.dist.maricopa .edu.

SLLUG

Salt Lake City, UT

The August meeting of the Salt Lake Linux User's Group meeting was held on
the 18th, at the Sandy Library (10010 S. Petunia Way, Sandy) at 7pm. Bryan Ford
was the guest speaker and the focus of the meeting was on operating system
features. For more information about the SLLUG, send e-mail to
vir@xmission.com.

Long Island Linux

Long Island, NY

The Board of Directors of the Suffolk County Computer Association (SCCA) has
resolved to establish a Linux user group named Long Island Linux. Anyone
interested is asked to send e-mail to Jim Edwardson at ceo@van.gapi.com.

Youngstown State University, OH

A Linux User's Group at Youngstown State University for North-East Ohio is in
the beginning organizational stages. Contact Steven A. DuChene at
sduchene@cis.ysu.edu or s0017210@cc.ysu.edu if you would like more
information.

DC Linux User's Group

Washington, DC

The DC Linux User's Group meets at NIH Bethesda, Building 12A. Meetings are
typically the first Wednesday of each month with presentations starting at 7pm.
NIH is just inside the Beltway on Wisconsin Avenue. A WWW map is available.
Meeting notices are posted to dc.general and dc.org.linux-users. Contact:
Przemek Klosowski, przemek@rrdjazz.nist.gov or (301) 975-6249.

LUNICS SIG

Scotch Plains, NJ

Since early spring, the The LUNICS SIG, an offshoot of the ACGNJ (Amateur
Computer User Group of NJ), has been meeting on the second Friday of the
month at the Scotch Plains Rescue Squad in Scotch Plains, NJ. The group is
composed mainly of Linux users but welcomes Unix, Coherent, Free/Net-BSD
freaks. Meetings have included everything from a demo of Linux projected
from a MasterSport II to a screen, to a demo of “mouseless X-windows”, to
extensive random access. For further information, e-mail to Peter Fillingham at
pete@panix.com.

Brookhaven National Lab, NY

This LUG is fairly active, with 30 members and meeting once a week. More
information from Jim Quinn, JQUINN@bnlnr.hfbr.bnl.gov.

PLUG

Portland, OR

The Portland Linux User's Group and Mutual Aid Society meets the third
Saturday each month, usually at the Round Table Pizza at SE Foster and Holgate
in Portland at 4pm. For more information contact Sean Utt at
seanu@plaza.ds.adp.com, or use the PLUG mailing list plug@aseTT.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What's GNU

Arnold Robbins

Issue #7, November 1994

This month's column discusses groff, the GNU version of troff.

groff

This month's column discusses groff, the GNU version of troff. Explaining troff

in full detail can (and has!) taken more than one book. For now, we'll provide a
little bit of history and an overview of what groff is, what the input tends to look
like, and how you would use it.

by Arnold Robbins

What is troff?

While there are many WYSIWYG word processing programs out there, some of
which are quite powerful, and others which are usable and freely available,
many long time “power users” still prefer text formatters like troff and TeX for
the control they give you. Another advantage that these programs have is that
you can edit the input using any text editor, even ed or vi over a 2400 baud
modem connection, or on a laptop system that can't support X windows.

nroff and troff are the Unix text formatters. They are essentially twins; each
accepts the same input “language”. The difference is in the output they
produce. nroff was designed to produce output for devices with fixed-width
and fixed-size characters, such as terminals and line printers. troff was
designed for photo-typesetters. nroff simply ignores requests that it cannot
honor. From now on, we will follow the time-honored convention of referring to
both programs as troff, to make things simpler.

troff was written at Bell Laboratories by the late Joseph Osanna. It was modeled
after the text formatters of the time, notably one named runoff. (runoff was
written by Jerry Saltzer for the CTSS system at MIT, running on a modified IBM
7094, in the middle 1960's time frame.) Interestingly enough, nroff was written

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

first; the name stood for “new runoff”. Later, when the research group acquired
a photo-typesetter, nroff was enhanced to deal with the newly acquired
capabilities, and thus troff was born. In the early 1980's, after the death of Mr.
Osanna, Brian Kernighan took over troff, cleaned it up and enhanced it. The
troff language is now frozen. It will not evolve further.

troff's Capabilities

Input to troff is a mixture of text and formatting commands. You might think of
this as “what you want to say” and “how you want to say it.” Typically,
commands are on separate lines by themselves. troff is able to distinguish
commands from text, since command lines begin with a dot, or period. Special
tricks have to be used to get troff to treat a line that begins with a dot as real
text.

There are a large number of commands in troff. Some of the more important
commands are for the following tasks:

• Filling. This means putting as many words of input text on one output line
as possible.

• Adjusting. This means padding lines with blanks so that the margins on
both sides are even. Book and magazine text is typically both filled and
adjusted.

• Font changes. Printed text is often in multiple fonts. Italics are often used
for emphasis. Bold text is used for strong emphasis and for headings.
troff supports at least four fonts normally, with the ability to easily add
others.

• Size changes. Photo-typesetters give you the ability to print characters at
different sizes. Most text is set in 10-point type, where one point is 1/72 of
an inch. Text can be made smaller or larger as needed. For example,
footnotes are often set in a smaller point size than normal text.

• Margin control. troff gives you separate commands to control the size of
all four margins on the piece of paper. This is typically done using a
combination of the

◦ - line length, how many characters or inches of text that can be in a
line

◦ - the page offset, how far to the right to shift the entire line, and
◦ - the indentation, how far left or right from the beginning of the line

to actually place text. E.g., in a book, the first line of a paragraph is
often indented 1/2 an inch.

• Centering. Any number of input lines can be centered in the output text.
• Line drawing. troff can draw horizontal, and vertical lines, as well as

arbitrary curves.

• Horizontal and Vertical Motions. You can move text up or down an
arbitrary amount. Consider subscripts and superscripts in mathematical
formulae, or footnotes indicators, which are often one half a line up and
in a smaller point size.

You can add comments to your troff source. They begin with \" and continue to
the end of the line. We will be using comments in our examples, to help explain
what is going on.

Many of the facilities can be done both as standalone commands, and with in-
line escape sequences. For example, to change to a bold font, one might have
text like this:

 Here is some regular text.
 .ft B \" now switch to bold
 This is bold.
 .ft \" switch back to earlier font
 This will be regular again.

You can do the same thing with in-line escape sequences. For font changes, you
use \f and either a single letter font name, or a (and a two letter font name. A
similar example would be:

 Here is some regular text. \fBThis is bold.\fP This will
 be regular again.

The letter P is special. It means to use the previous font.

troff provides two nice features, strings and number registers. A string is a
shorthand for some text. For example, if you don't want to type the Linux

Operating System over and over again, you could define a string LX, and then
use the string in your text. This feature can save a lot of typing.

 .ds LX the Linux Operating System \" ds means define string
 If you are new to *(LX, then you should subscribe to
 \fILinux Journal\fP. It covers *(LX in great detail,
 month after month.

Number registers are like variables in programming languages. They can
contain numeric values. They can also be used in an “auto-increment” and
“auto-decrement” fashion. This means that with each use, the value goes up by
one or down by one. Why would you need such a thing? Think about
automatically numbering chapters, sections, and subsections, as well as figures
and footnotes. You would have a register for the chapter number, another for
the section number, and so on. With each new chapter, the section register is
reset to one. With each new section, the subsection register is also reset to one,
and so on.

Macros

As you are hopefully beginning to see, troff provides you all the mechanisms
you need for complete control over your document's format. Unfortunately,
this is often more control than you need. Writing documents using bare troff,
while possible, can be quite painful. It is very much like programming in
assembly language: you have complete control, and when the result works it
works really well, but there is an awful lot of detail to keep track of, and it can
be tedious and difficult.

To make it easier for regular users to manage the detail, troff allows you to
define macros. A macro is like a subroutine in a programming language. You
can group commands together to perform a larger task, and use the macro
name, instead of writing out the entire sequence of commands each time.

Consider starting a new paragraph. You have to do the following tasks:

• 1. See if there is room left on the page for at least two lines of text.
• 2. Skip a space after the last paragraph.
• 3. Indent the first line of text by 1/2 an inch.

You could write the commands to do this over and over again. But that is (a)
tedious, (b) a hassle to update if you change how you do paragraphing. Instead,
you can define a macro, say .P, to do this for you.

 .de P \" DEfine paragraph macro
 .ne 3 \" we NEed at least three lines
 .sp \" SPace down one line
 .ti .5i \" Temporary Indent .5 inches
 .. \" end the macro definition

Then, in your text, you just put .P on a line by itself wherever you want a
paragraph.

 .ds LX the Linux Operating System
 .ds LJ \fILinux Journal\fP
 If you are new to *(LX, then you should subscribe to
 *(LJ. It covers *(LX in great detail,
 month after month.
 .P
 And even if you are an experienced user of *(LX,
 *(LJ will bring you valuable tips and tricks to keep
 your Linux system up and running.

One of the less attractive features of standard troff is that command, macro,
string, and register names are limited to no more than two characters.
Fortunately, groff allows longer names, with a different syntax for accessing
them. In fact, groff has many nice extensions over troff, making the task of
writing macro packages considerably easier. The extensions are documented in
the gtroff(1) man page.

Popular Macro Packages

There are a number of popular troff macro packages. Using them is like
programming in FORTRAN; it beats the heck out of Assembly Language, but it's
not as nice as C or Modula-3.

The common macro packages are:

• -ms - Manuscript macros. Originated in V7, popular on Berkeley Unix.
• -man - Manual Page macros.
• -mm - Memorandum Macros. Very powerful macros, popular on System V.
• -me - Berkeley Technical Paper macros. An ugly package.
• -mdoc - The new Document Macros from Berkeley.
• -mandoc - A package that figures out dynamically if you want -man or -

mdoc.

groff will support these directly if you have them, particularly using the -C
compatibility mode option. It also has its own version of many of these
packages.

The -ms and -mm are the most portable packages to use. -mm has many more
features than -ms, thus making it harder to learn. In the long run though, the
effort is worth it, because you can do so much.

Preprocessors For troff

Over the years, it was found that macros helped, but that there were some
things that were just too difficult to do in bare troff, even with macro packages.
The approach that was developed was to write a “little language” that solved a
particular task, and to pre-process the language into raw troff. The common
pre-processors are:

• tbl - formats tables
• eqn - formats equations
• pic - formats pictures (diagrams)
• grap - formats graphs

As an example, here is part of a table from a reference card I worked on:

 .TS
 tab(~);
 lfB l lfB l.
 abs~absolute value~int~integer part
 acos~arc cosine~log~natural logarithm
 asin~arc sine~sin~sine
 atan~arc tangent~sinh~hyperbolic sine
 cos~cosine~sqrt~square root

 cosh~hyperbolic cosine~tan~tangent
 .TE

We'll explain it line by line. First, tbl only looks at lines between .TS (table start)
and .TE (table end). Everything else is left alone. This makes it easy to use tbl in
a pipeline with the other preprocessors. The first line sets the tab character to
~. Normally, tabs in the input separate each column of the table. For this table,
a ~ is used to make it easier to mark off the columns.

Then, for each line of data in the table, you provide a line that describes the
layout information. l means left justified, r means right justified, and c means
centered. All the columns in this table are left justified. The first and third
columns also use a different font (the f). Here, they are using the bold font.

In this example, there is only one control line, so it is applied to all the data
lines. For more complicated tables, you have one control line per data line, with
the last control line applying to any remaining data lines.

The other preprocessors are similar in functionality. grap is actually a
preprocessor for pic.

Typically, the commands are used in a pipeline:

 grap doc.tr pic tbl eqn troff -mm -Tps > doc.ps

The actual usage will vary from machine to machine; we'll see below how to run
groff.

Output Devices

nroff was originally designed for terminals and line printers, which are devices
with fixed width characters. troff was designed for the Wang CAT photo-
typsetter, which could have up to four different fonts available, in many
different point sizes.

Around 1980, Brian Kernighan revamped troff to create ditroff, the device-
independent troff. This version accepted an enhanced language, and generated
ASCII output that described the motions the output device should make around
the page, the size and placement of characters, and so on. Then, to add a new
output device (laser printer, photo-typesetter, or whatever), you would write a
post-processor for the device independent output that would correctly drive
your device. Recent version of troff are the device-independent version, usually
with support for PostScript(TM) output.

The ditroff saga can be found in Bell Labs Computing Science Technical Report
#97. You can get PostScript for this report via anonymous ftp to netlib.att.com.
Change to /netlib/att/cs/cstr, use binary mode, and retrieve 97.ps.Z.

GNU troff

Now that you know what troff is, we'll discuss the specifics of the GNU version,
groff. groff is written in C++. This is somewhat unusual; most GNU programs
are written in C. To compile it, you need a C++ compiler. The GNU C++ compiler,
g++, will usually do it with little problem. You will need both g++ and the GNU
C++ library, libg++ to compile the groff suite of programs.

The programs in the suite are:

 gtroff - the actual troff clone
 gtbl - the tbl clone
 geqn - the eqn clone
 gpic - the pic clone
 groff - the driver for the other programs

There is no grap clone. Anyone who wishes to write one should contact
gnu@prep.ai.mit.edu.

groff has a large number of extensions over Unix troff. It particular, groff

supports long names for commands, strings, and registers, and has many
additional commands. It also has a compatibility mode, where all the
extensions are turned off. This is occasionally necessary when using macro
packages meant for original troff.

The groff pre-processors described above cannot be used with original troff;
they take advantage of groff's extensions.

groff uses the ditroff model of post-processors for different devices, with the
same intermediate format. By default, groff generates PostScript output. The
other most useful output format is plain ASCII. This is in fact how nroff is
provided; by a shell script that calls groff -Tascii (i.e., the output type [-T] is
ASCII). An interesting output type is TeX DVI, which can be used on many older
laser printers that do not support PostScript. groff comes with two previewers
for X windows, using different density fonts (75 and 100 dots per inch).

groff comes with a number of macro packages. It has its own version of the -
man macros. The -mgs package is the GNU version of -ms, and -mgm is the
GNU version of -mm. These should be used in preference to the original
packages, since they can also take advantage of the groff extensions. The
Berkeley -me, -mdoc, and -mandoc packages are themselves freely
distributable, and are included with the groff distribution.

What is really nice about groff is that it is like lint for your troff documents. The
programs check *everything*. Many things that Unix troff silently ignores, groff

will warn you about. Often there are subtle errors in your files, and groff will
help you catch the problems. Although every once in a while, there really is no
problem, and you need to use compatibility mode instead.

Unfortunately, the one major lack in the groff distribution is that there is no
comprehensive manual. The Tenth Edition Research Unix Programmer's
Manual describes troff and its friends in detail. groff is based on this
specification. Additional information can be found in the man pages that come
with groff.

Information about pic can be obtained via anonymous ftp from the same site
and directory mentioned above, in the file 116.ps.Z. A description of grap can
be found in 114.ps.Z.

Summary

GNU troff, groff is a powerful, complete implementation of the troff software
suite. If you will be doing anything with troff, it is definitely the version to get. It
generates PostScript by default, will find bugs in your documents, and supports
all popular macro packages. The source code is available on prep.ai.mit.edu in /
pub/gnu, in the file groff-1.09.tar.gz. It should be found on all GNU mirror sites
as well.

Editorial

Every once in a while, it is a worthwhile exercise to step back and stop and think
about the free software you use with Linux, day in and day out. The Linux
kernel is only one part of it. There are literally hundreds of utility programs, the
majority of which were produced by Free Software Foundation staff and
volunteers. The GNU General Public License, whose terms cover the utilities
and the Linux kernel, came from the FSF. Linux is testimony to the idea that
freely distributable software can be usable, and of high quality. Linux would
have never happened if it had it *not* been free, and had there not been the
GNU utilities to complete the picture.

Free Software Foundation Information

It is only good sportsmanship and fair play to “give something back” to the
organization that has done so much for you: the FSF. You can help further the
cause of the FSF in a number of ways, both directly and indirectly.

https://secure2.linuxjournal.com/ljarchive/LJ/007/2862s1.html

If you are a programmer or a writer, or both, the FSF has software *and*
documentation that needs to be written. Serious volunteers are always
welcome.

If you want to help support the FSF monetarily, you can do that too. You can
buy software and/or documentation from them. The FSF sells tape and CD-
ROMs with their software on it. You probably already have most of the
software, but you may wish to have the printed documentation that goes with
it. The GNU manuals are nicely printed and bound, and are not that expensive.
Buying software and manuals directly contributes to the production of more,
high quality, free software.

In the U.S., you can make tax-deductible donations to the FSF. It is considered a
non-profit organization under U.S. law. This also helps.

Indirectly, you can choose to buy your Linux distributions from resellers who
state that they give a percentage to the FSF. If your favorite distributor does not
do this, then ask them *why* they don't, and encourage them to do so.

Consider what you can do to help the FSF, and then do it!

Arnold Robbins is a professional programmer and semi-professional author. He
has been doing volunteer work for the GNU project since 1987 and working
with Unix and Unix-like systems since 1981.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Events

LJ Staff

Issue #7, November 1994

Open Systems World and Amsterdam.

Open Systems World

Linux Journal will be hosting the Linux International Users Conference at the
6th Annual Open Systems World/FedUNIX '94. The event is being held at the
Washington Conference Center, Washington, D.C, during the week of
November 28, and the two-day Linux Confer-ence will be on Thursday and
Friday, December 1-2.

Eight other conferences will be held during the week, including Federal Open
Systems Conference, Motif/COSE International Users Conference, Novell
AppWare Developers Conference, SCO Interoperability Confer-ence, Solaris
Developers Conference, Windows NT Developers Conference, and the Word
Wide Web/Mosaic Users Conference. The event is expected to attract over
10,000 attendees, so this is a great opportunity for Linux to show its stuff!

The Linux Track will include tutorials, panel discussions and presentations by
some well-known personalities in the Linux Community, including Bob Amstadt,
Eric Youngdale, Don Becker, Phil Hughes, Przemek Klosowski, Dirk Hohndel,
Michael K. Johnson, David Wexelblat, and Matt Welsh. Sessions will cover the
history of Linux, Linux and the Internet, Wine, the commercial future of Linux,
Linux and NASA, legal implications of using and developing tools and
applications on Linux, iBCS2 compatibility, X Windows System on Linux, a clinic
for the novice user, and how to convince your boss/employer/customer to use
Linux.

There will be Birds of a Feather sessions at the hotel on Thursday evening, with
discussions on systems administration, Internet connectivity, and hackers; fun
with Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

If you would like more information, contact us at Linux Journal, call Open
Systems World at (301) 953-9600, or try URL:www.mcsp.com/OSW-
FedUNIX.html.

Amsterdam

One short week after the Open Systems World event in the United States, the
International Symposium on Linux will be held in Amsterdam. The RAI Congress
Centre is the place, December 8 and 9 are the dates, and the organizers are
Frank B. Brokken, Karel Kubat, and Piet W. Plomp of the ICCE, University of
Groningen.

Current information about the symposium is available via anonymous ftp at
beatrix.icce.rug.nl in the directory pub/symposium. It is refreshed daily, and
contains a list of speakers, a list of interested attendees, and information about
local hotels. The organizers of the symposium can be reached at
linux@icce.rug.nl.

Some of the twenty-five speakers already scheduled include Bob Amstadt,
Remy Card, Michael K. Johnson, Linus Torvalds, Theodore Ts'o, and Matt Welsh.
Formal lecture topics include “Viability of Linux”, Ham radio and Linux,
“Typesetting, X and MS-Windows”, “Linux and UnixWare; a comparison”, “Linux
in Biostatistic Research”, “Development of Linux and the Role of the Expert
Community”, “Onyx”, Wine, “Programming in a Multi-Threaded Environment”.

People without Internet access can reach ICCE at:

ICCE, Univ. of GroningenP.O. Box 3359700 AH Groningenthe Netherlands(+31)
50 63 36 47

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.mcsp.com/OSW-FedUNIX.html
http://www.mcsp.com/OSW-FedUNIX.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Andy

Andy Tefft

Issue #7, November 1994

Now and then, Andy Tefft will tell us what he ahs been doing with his Linux
system, which may give you some ideas for your own system. This month, he
installs Mosaic and pays with a clone of the classic board game, Risk.

I admit it. I'm hooked on Mosaic. You don't know what Mosaic is? Neither did I,
until a few months ago. Mosaic is perhaps the most well-known WWW browser,
at least for X and Microsoft Windows. (To find out more about WWW, see the
article by Bernie Thompson in Linux Journal issue 3.)

After getting Mosaic at work (with no actual Web access, but to see how I could
use it to display my own internal documentation), I decided I wanted to install it
at home. I don't have Motif, which is required to compile Mosaic, but thankfully
a few people have put pre-compiled binaries of different types on
sunsite.unc.edu (/pub/Linux/system/Network/info-systems). Installation was
easy; I just extracted the gzipped tar file, copied the binary to a suitable
location, and copied the app-defaults file into a suitable location (/usr/X386/lib/
X11/app-defaults). The README material from the source is also included. This
is not a small package; over 1MB for the Mosaic binary on disk, and it uses
nearly 2MB of RAM.

Now I can Mosaic over my PPP link from home. What fun! Interestingly, I have
found that the traffic it generates is not too hard on the limited-bandwidth PPP
link (except when loading large images). For the net-impaired, there is also a
version of Mosaic which works over a term connection in the same directory on
sunsite.

In between Mosaic-ing (OK, it does get a little boring when all you have to
browse with your information browser is information you created), I had a little
time to try out Frisk-0.99a, a pretty nice Risk clone by Elan Feingold
(elan@tasha.cheme.cornell.edu). It is multi-player and networked, so you at
least have to have loopback networking to be able to use it. Also, there is no

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

computer opponent, although two players can share one window and one
screen. It has a nice help facility, too. There is only one game style supported,
but there is a lot of potential to this one.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #7, November 1994

Readers sound off.

Free Means You Pick the Price

I enjoyed [Matt Welsh's] article Thou Shalt Not Use MS-DOS, in the latest issue
of LJ. I think what [he] said is true, but misses a point Phil Hughes has alluded to
in an earlier editorial.

I think the reason that Linux; and free software in general; is so great is that it's
an incredible consumer value. According to the dictum, “what do you put in to
it, what do you get out of it, and what about support?”, most commercial
software falls right down flat: it's expensive to buy, you often can't try it out in
advance, and if it's broke you're at the mercy of the vendor, who is the only one
with the source code.

If free software was free but you didn't get the source, it would be terrible; you
could try it in advance, but when it finally did break, no doubt in the middle of
an important project, you would be stuck. On the other hand, if payware came
with source code, it would be a much better deal: when it broke, you could ask
the manufacturer to fix it, or you could call your local hacker and negotiate a
price based on how soon you need it fixed. Of course even payware with
sources still doesn't let you test it all in advance of buying it, but it's a much
better consumer value.

Consider the auto industry for a moment. It will cost you about as much to
service a car over its life as it cost to buy in the first place. Would you pay
double the price up front in order to avoid paying for service down the road?
Yet this is just what software houses do, since the only way they can pay for
customer support is by charging more for the product. It's no wonder software
support is so lousy! This is why being able to hire your own hacker is so
important.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

And thus a common point of confusion about free software: it is free in the
liberty sense, but it isn't free in the money sense, since programmers have to
eat just like everybody else. What free software is is a much better deal. Even if
you had to pay a little bit for it, it would be a great deal. Imagine that you had to
pay Linus $1 every time you got a new major revision of Linux. Linux would still
be the best consumer bargain going. And, indeed, many Linux users pay $40
and more for a convenient distribution.

And that, in my opinion, is what makes Linux great. It's cheap to test drive, it is
high quality, it's cheap to buy, and when something breaks you can decide how
much it's worth to you to get it fixed, how fast, and you can get it fixed. What do
you put in to it? A few dollars. What do you get out of it? Professional-quality
software. What about support? The best.- -David
Keppelpardo@cs.washington.edu

More About FSF?

1. Thanks for the Introduction to the GNU C Library and Programming the VT
Interface columns in LJ. The notes on signal() were welcomed.

There have been a number of columns connected with the FSF+GNU. LJ should
add a few notes to these columns on ways to support FSF and GNU. In your
GNU C Lib article, you wrote “I do not know if [the reference manual] is being
published on paper”. My copy of the GNU's Bulletin is at school, but I think it is
listed. In any case, I'd like to see LJ more explicitly mention support of FSF
(although you did mention FSF books in the sidebar).

Just to be completely clear: I'm not suggesting that LJ “beg” for money for FSF;
only that LJ help new users become familiar with the project. (My only “official”
connection with FSF is in support of GNU awk. I receive no money from FSF.)

2. There is a common thread in LJ and on newsgroups about the “free-ness” of
Linux (Deutsch's letter in #2, Kempen interview in #3, Welsh's columns). Users
forget (or are not aware of) the importance of various projects in the success of
Linux. LJ could educate users in future columns on GNU software, C-Kermit,
ghostscript, etc.—Darrel Hankersonhankedr@mail.auburn.edu

LJ Responds:

1. Read What's GNU for this month. While we won't run an editorial like that
every month, we definitely agree that the FSF has played a key role in the
development of Linux, and is worth supporting.

2. We have published several tutorials. It is true that quite a few have not been
for FSF software, but that is probably because FSF is better known than some of
the smaller new utilities that people express an interest in writing tutorials for.
We encourage people who are excited about some package they work with to
send e-mail to info@linuxjournal.com and discuss writing a tutorial for the
package.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Stop the Presses

Phil Hughes

Issue #7, November 1994

While I expected development software there is a whole new area where Linux
is becoming active: database software.

I was just flipping through back issues of Linux Journal looking for an idea for
this column. What caught my eye was the change in profile of Linux Journal
advertisers. CD-ROM distributors such as InfoMagic, Trans-Ameritech and
Yggdrasil have been there from the beginning as have the systems distributors
like Fintronic and Promox. The only Linux application that was advertised was
Techplot from Amtec Engineering.

Things are changing. We have seen press releases and advertisements from
hardware vendors (Cyclades communications board, for example), and
software vendors. While I expected development software there is a whole new
area where Linux is becoming active: database software.

New products from Revolutionary Software, Infoflex, WorkGroup Solutions,
Poet Software and Ray Ontko & Co. offer commercial alternatives to Ingres and
Postgres that come with many Linux distributions.

Finally, trade shows are starting to recognize the potential of Linux. Linux
Journal is sponsoring a 2-day Linux track at Open Systems World. This puts
Linux on an even keel with commercial tracks on NT, SCO and Solaris at the
same show. Hopefully this will be a good chance for those of us in the Linux
community to not just rub shoulders with “the commercial guys” but also to
show them what we have to offer.

What does this mean? To me it means that Linux is well on its way to the
commercial market. Six issues from now I expect that I will see ads and press
releases for applications using the databases that have recently appeared. End
users probably won't be asking “is it Linux” vs. “is it Unix” or “is it Netware” or “is
it NT”. What they want is a solution and if we can offer the solution that works

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

well we should get the market. And, the cost of Linux gives us a serious
advantage.

Phil Hughes is the publisher of Linux Journal. He is a DeadHead who claims he's
33-years-old, and that he'll move to Montana as soon as he gets his staff
trained.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #7, November 1994

Just Logic SQL Database and Yggdrasil Plug 'N Play.

Just Logic SQL Database

Just Logic Technologies has introduced Just Logic/SQL Database Manager, an
ANSI SQL relational database system for Linux. The database system includes a
complete development system and utilities.

The system offers three choices of programming interfaces: a complete set of
C++ Class definitions, a C application program interface, and a standard C
precompiler for portability from or to other relational databases on other
operating systems.

Contact: Just Logic Technologies, 40 Commerce Street, Nun's Logic, Quebec,
H3E 1V6 Canada (514) 943-3749

Yggdrasil Plug 'N Play

Yggdrasil's Fall 1994 Plug-and-Play Linux release and MoCheap 1.2.4 (a port of
OSF/Motif to Linux) were released in September 1994.

The Fall 1994 release includes the new X11R6 XFree86 3.0 X-windows ported
and integrated into Linux, an improved graphical user interface for Lucid Emacs
and ImageMagick, and better DOS and Windows emulation.

To the 1.1.47 kernel used in the Fall 1994 release, have been added new device
drivers that allow Linux to run under DOS and to transparently use DOS to
access CD-ROM's and hard disks not directly supported by Linux.

Contact: Yggdrasil Computing, Inc. 4880 Stevens Creek Blvd., Suite 205 San Jose,
CA 95129-1034 (408) 261-6630, FAX(408) 261-6631.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/007/toc007.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Columns
	Making the Most of Andrew
	Terry Gliedt
	Using Filters
	Personalizing AUIS
	Printing
	Initialization Files
	Controlling Menus
	Filetypes
	Key Definitions
	Conclusion

	Linux in Antarctica
	Andrew Tridgell
	The Hardware
	The Software

	Samba—Unix Talking with PCs
	Andrew Tridgell
	Security ad nauseum
	Samba
	Some History
	What Can It Do?

	Linux Performance Tuning for the Faint of Heart
	Clarence Smith, Jr.
	Think First
	Configuring the Kernel
	Types of Devices
	Possible Confusion
	Sound Tricks
	Making System Dependencies
	Compiling the Kernel
	Installing the New Kernel
	Kernel Resources

	Selecting Hardware for a Linux System
	Phil Hughes
	CPU and RAM
	Disks
	CD-ROM
	Printers
	Serial Communications
	Networking
	Video
	Conclusion

	CD-ROM and Linux
	Jeff Tranter
	The Advantages of CD-ROM
	Supported Hardware
	Configuring Linux for CD-ROM
	Using a CD-ROM
	PhotoCD
	Playing Audio CDs
	Inheriting File System
	Creating CD-ROMs
	Common Problems
	For More Information

	Linux User Group News
	LJ Staff
	TLUG
	BUUG
	PLUG
	SLLUG
	Long Island Linux
	Youngstown State University, OH
	DC Linux User's Group
	LUNICS SIG
	Brookhaven National Lab, NY
	PLUG

	What's GNU
	Arnold Robbins
	groff
	What is troff?
	troff's Capabilities
	Macros
	Popular Macro Packages
	Preprocessors For
troff
	Output Devices
	GNU troff
	Summary
	Editorial

	Linux Events
	LJ Staff
	Open Systems World
	Amsterdam

	Andy
	Andy Tefft

	Letters to the Editor
	Various
	Free Means You Pick the Price
	More About FSF?

	Stop the Presses
	Phil Hughes

	New Products
	LJ Staff
	Just Logic SQL Database
	Yggdrasil Plug 'N Play

